Abstract
The heat treatment of a metal is a set of heating and cooling cycles that a metal undergoes to change its microstructure and, therefore, its properties. Temperature-time-transformation (TTT) diagrams are an essential tool for interpreting the resulting microstructures after heat treatments. The present work describes a novel proposal to predict TTT diagrams of the γ' phase for the Ni-Al alloy using artificial neural networks (ANNs). The proposed methodology is composed of five stages: (1) database creation, (2) experimental design, (3) ANNs training, (4) ANNs validation, and (5) proposed models analysis. Two approaches were addressed, the first to predict only the nose point of the TTT diagrams and the second to predict the complete curve. Finally, the best models for each approach were merged to compose a more accurate hybrid model. The results show that the multilayer perceptron architecture is the most efficient and accurate compared to the simulated TTT diagrams. The prediction of the nose point and the complete curve showed an accuracy of 98.07% and 86.41%, respectively. The proposed final hybrid model achieves an accuracy of 96.59%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.