Abstract

The equation for the derivative connecting surface spectral emissivity, wavelength, and thermodynamic (true) temperature of an opaque heated body at the point of spectral maximum of thermal radiation was obtained. It is suggested to solve the problem of determining the true temperature of an opaque surface in two stages. At the first stage, the spectral range, most comfortable for approximation of body emissivity, is distinguished using a special function (relative emissivity), and the true temperature is determined. At the second stage, the true temperature is determined again using the resulting equation for the derivative. The dimensionless parameter that connects the radiative properties of material with the peak wavelength and characterizes deviation from Wien’s displacement law was found. If the absolute value of this parameter is low, the value of true temperature obtained at the first step can be specified at the second stage. This approach is illustrated by experimental data obtained at comparison of spectral radiance of the temperature lamps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call