Abstract

Urgency of the research. The potential of controlling the position of levitating objects has great application in deposition and in various positioning systems. Magnetic levitation eliminates direct mechanical friction between moving parts. Target setting. The measurement shielding method used is one of the methods of determining the position of a levitating object. By combining positioning and regulating elements, we achieve a feedback control. The use of a given type of measurement has advantages in places where the use of other methods is not appropriate. Actual scientific researches and issues analysis. The problem of magnetic levitation is addressed by several research laboratories with a direct connection to practice. The problem that is currently solved within magnetic levitation is the regulation of the levitating object using various types of regulators. The research objective. Derivation of mathematical model of magnetic levitation and examination of nonlinear system followed by linearization by Taylor series. Experimental determination of characteristics and dependence between object position, voltage and current. The statement of basic materials. The position of the levitating object is determined by the shading of the optical sensor. The light source is a laser light. Conclusions. In this work we defined the mathematical model of the magnetic levitation system and subsequently derived the transfer function of the levitation system and the position sensor. From the experimental verification of the shadow method for the determination of the position of the levitating object and the consequent need for regulation, we found that the dependence of the position of the levitating object on current and voltage on the photodiode is linear in the active region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.