Abstract

Human liver biopsy samples, collected from 52 individuals, were analysed by inductively coupled plasma-mass spectrometry (ICP-MS) and total reflection X-ray fluorescence (TXRF) spectrometry in a retrospective study (i.e. patient selection and liver biopsy were not for the purpose of element analysis). The freeze-dried samples (typically 0.5-2 mg dry weight) were digested in a laboratory microwave digestion system and solutions with a final volume of 1 mL were prepared. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Rb, and Pb were determined by use of a Thermo Elemental X7 ICP-MS spectrometer. TXRF measurements were performed with an Atomika Extra IIA spectrometer. Yttrium was employed as an internal standard, prepared by dissolution of 5N-purity yttria (Y(2)O(3)) in our laboratory. The accuracy was tested by analysis of NIST 1577a Bovine Liver certified reference material. The concentrations of Fe, Cu, Zn, and Rb determined in human liver biopsy samples were in good agreement with data published by other authors. The distribution of nickel in the samples was surprisingly uneven-nickel concentrations ranged from 0.7 to 12 microg g(-1) (dry weight) in 38 samples and in several samples were extremely high, 36-693 microg g(-1). Analysis of replicate procedural blanks and control measurements were performed to prevent misinterpretation of the data. For patients with steatosis (n=14) Ni concentrations were consistently high except for two who had levels close to those measured for the normal group. As far as we are aware no previous literature data are available on the association of steatosis with high concentration of nickel in human liver biopsies taken from living patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.