Abstract
This paper describes an analytical method for trace element determination in bone tissues. The study of the influence of the bone matrix showed that the addition of 25% ground bone to graphite powder with introduced impurities did not affect the analytical signal of elements in the spectral excitation in a two-jet plasma. On basis of these investigations a method for direct multielement analysis of bone tissues was suggested. The sample preparation procedure consisted in mixing powdered bone (particle size 30μm or less) with a spectroscopic buffer (graphite powder plus NaCl) in ratio 1:3 or to a greater extent depending on the analyte concentration. Reference samples based on graphite powder were used for construction of calibration curves. The NaCl concentration in analyzed and calibration samples was 15 wt%. The effect of particle size was revealed from the determination of Ba, Sr, and Mg. To eliminate this effect, treatment of the samples with nitric acid was proposed. The validation of the technique was confirmed by comparison of the analysis results of a bone sample with those obtained by inductively coupled plasma atomic emission spectrometry after wet acid digestion. The limits of detection estimated for 20 elements were the following (μg g(-1)): 0.1 (Ag), 1.0 (Al), 1.0 (Ba), 0.1 (Be), 1.2 (Bi), 0.4 (Cd), 1.0 (Co), 0.2 (Cu), 0.6 (Cr), 1.9 (In), 2 (Fe), 0.3 (Ga), 0.4 (Mn), 0.4 (Mo), 0.7 (Ni), 1.0 (Pb), 0.7 (Sn), 0.8 (Tl), 5 (Sr), 1.0 (Zn).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.