Abstract

A new real-time method for measuring a trace concentration of nitric oxide (NO) in a complex matrix routinely used in pharmacological studies of its bioactivity is described. NO was quantified as a gas by chemiluminescence after extraction from a continuous liquid sample flow with a limit of detection of 0.042 nmol dm(-3) at a signal to noise ratio of 3. Theories to calculate the concentration of NO in the liquid sample flow from a direct measurement of NO in the extraction carrier gas are presented. The efficiency of extraction is determined by a stopflow experiment. An example is presented of the measurement of the steady-state concentrations of NO in Krebs-bicarbonate buffer at pH 7.4 and 37 degrees C when its liquid surface is sequentially exposed to gases containing various concentrations of NO in O2 plus CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.