Abstract
A biosensor capable of highly sensitive detection of trace chromium (VI) with a simple hollow-core metal-cladding waveguide (HCMW) structure is theoretically modeled and experimentally demonstrated. Owing to the high sensitivity of the excited ultrahigh-order modes in the waveguide, a tiny variation of the extinction coefficients in the waveguide guiding layer where the chromate ions reacts with the diphenylcarbazide (DPC) can lead to a significant change of light intensity in the reflection spectrum. The experimental results indicate that using the proposed method, the chromium (VI) sensitivity detection limit can be as low as 1.2 nM, which represents a 16-fold improvement compared to the surface plasmon field-enhanced resonance light scattering (SP-RLS) method, and a 4-fold improvement compared to the flame atomic absorption spectrometry and fluorimetry spectroscopy, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.