Abstract

Newly developed methods involving an on-line combination of sedimentation field-flow fractionation-inductively coupled plasma-high resolution mass spectrometry (SdFFF-ICP-HRMS) have been used to study the distributions of extractable heavy metals in a soil which had been treated with sewage sludge contaminated with Cu or Pb. The relationship of these metals with other elements in the colloidal fraction was also investigated. The colloidal fraction from the soil was obtained by repeated gravitational sedimentation and extracted with 0.11 M acetic acid, 0.1 M hydroxylamine hydrochloride, 0.05 M ethylenediaminetetraacetic acid disodium salt (EDTA) or aqua regia to assess the potential availability of the metals Cu and Pb. Large proportions of the Cu and Pb were extracted by EDTA, approaching that removed by aqua regia, whereas < 10% of the aqua regia extractable metals were removed by acetic acid and hydroxylamine chloride. The distributions of the heavy metals, the major mineral forming element (Al) and the elements forming sesquioxides (Fe and Mn) within different size classes (0.05-1 microm) of the colloidal fraction were measured using SdFFF-ICP-HRMS before and after extraction with EDTA. This information provides an insight into the composition of the colloids and the distributions of metal contaminants. In the contaminated soil colloids, the concentration of Fe, Mn and Pb is greatest in the smaller particles (<0.2 microm). In contrast, the Cu concentration is constant over the size range studied. Iron oxide surface coatings probably play a significant role in Pb adsorption on soil particles, but may be less important for Cu. The combination of selective chemical extraction, SdFFF and ICP-HRMS provides a means of determining the distribution of potentially available heavy metals within the colloidal fraction of contaminated soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.