Abstract

Tire wear (TW) constitutes a significant source of microplastic in terrestrial ecosystems. It is known that particles emitted by roads can have an effect up to 100 m into adjacent areas. Here, we apply for the first-time thermal extraction desorption gas chromatography-mass spectrometry (TED-GC/MS) to determine TW in soil samples by detection of thermal decomposition products of styrene-butadiene rubber (SBR), without additional enrichment. Additionally, zinc contents were determined as an elemental marker for TW. Mixed soil samples were taken along three transects along a German motorway in 0.3, 2.0, and 5.0 m distance from the road. Sampling depths were 0–2, 2–5, 5–10, and 10–20 cm. Four fine fractions, 1 000–500, 500–100, 100–50, and <50 μm, were analyzed.TW contents based on SBR ranged from 155 to 15 898 mg kg−1. TW contents based on zinc were between 413 and 44 812 mg kg−1. Comparison of individual values of SBR and zinc reveals SBR as a more specific marker. Results confirm that most TW ends up in the topsoil within a 2 m distance.The sampling strategy resulted in representative data for a larger area. Standard deviations of quadruple TED-GC/MS determination of SBR were <10% for all grain size fractions. TED-GC/MS is a suitable analytical tool for determining TW in soil samples without the use of toxic chemicals, enrichment, or special sample preparation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call