Abstract
Low-frequency (20 kHz) ultrasound has been shown to enhance transdermal transport of drugs, a phenomenon referred to as sonophoresis. In this paper, we report the threshold energy dose for ultrasound-induced transdermal drug transport. The threshold was determined by in vitro measurements of the dependence of sonophoretic enhancement on ultrasound parameters, including intensity, duty cycle, and exposure time. While the enhancement varies linearly with ultrasound intensity and exposure times, it is independent of the duty cycle in the range of parameters studied. The enhancement is also directly proportional to the ultrasound energy density once the threshold value is crossed. For full thickness pig skin, the threshold value is about 222 J/cm2. The overall dependence of transport enhancement on ultrasound parameters is similar to that of cavitation measured in a model system, pitting of aluminum foil. Specifically, the extent of pitting is proportional to ultrasound intensity and exposure time and is independent of duty cycle. Furthermore, the extent of pitting is also proportional to the ultrasound energy density. The similarity between the parametric dependence of transport enhancement and cavitation is consistent with previous findings that cavitation plays the dominant role in sonophoresis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.