Abstract
The presented paper deals with the study of thermophysical properties of cast and complex alloyed nickel based on superalloy Inconel 713LC (IN713LC). In this work, the technique of Differential Thermal Analysis was selected for determination of the phase transformation temperatures and for the study of the effect of varying heating/cooling rate at these temperatures. The samples taken from as-received state of superalloy were analysed at heating and cooling rates of 1, 5, 10, 20 and 50 °C min−1 with the help of the experimental system Setaram SETSYS 18TM. Moreover, the transformation temperatures at zero heating/cooling rate were calculated. The recommended values for IN713LC after correcting to a zero heating rate, are 1,205 °C (Tγ′,solvus), 1,250 °C (solidus) and 1,349 °C (liquidus). Influence of heating/cooling rate on shift of almost all temperatures of phase transformations was established from the DTA curves. Undercooling was observed at the cooling process. The samples before and after DTA analysis were also subjected to the phase analysis by scanning electron microscopy using the microscope JEOL JSM-6490LV equipped with an energy dispersive analyser EDAX (EDS INCA x-act). Documentation of the microstructure was made in the mode of secondary (SEI) and backscattered (BEI) electron imaging. On the basis of DTA analysis and phase analysis it may be stated that development of phase transformations of the alloy IN713LC will probably correspond to the following scheme: melting → γ phase; melting → γ + MC; melting → eutectics γ/γ′; melting → γ + minority phases (e.g. borides); and matrix γ → γ′.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.