Abstract

The 10 H SiC thin films are potential candidates for devices that can be used in high temperature and high radiation environment. Measurement of thermal conductivity of thin films by a non-invasive method is very useful for such device fabrication. Micro-Raman method serves as an important tool in this aspect and is known as Raman thermometry. It utilises a steady-state heat transfer model in a semi-infinite half space and provides for an effective technique to measure thermal conductivity of films as a function of film thickness and laser spot size. This method has two limiting conditions i.e. thick film limit and thin film limit. The limiting conditions of this model was explored by simulating the model for different film thicknesses at constant laser spot size. 10H SiC films of three different thicknesses i.e. 104, 135 and 156 nm were chosen to validate the thin film limiting condition. Thermal conductivity of these thin films varied from 0.60 – 4.80 (Wm−1K−1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.