Abstract

Saw blades are one of the most used cutting tools. They compose the expensive parts of a cutting machine. Therefore, saw-blade wear is an important parameter governing the economy of the cutting process. Significant savings could be made when it is controlled effectively. In this study, a new methodology is employed for the determination of the saw-blade wear in the cutting of two types of marble. Wear of segments is determined by high-precision inductively coupled plasma method. Two types of marbles were used to investigate the wear performance of diamond-impregnated segments of circular saw-blade matrix. Taguchi mixed design L16 (43 21) is used as an experimental design and the results are evaluated statistically with Minitab. The results reveal that the specific wear rate (SWR) of Beige marble increases with the increase of the peripheral speed, traverse speed, depth of cut and down-cut mode operation. Additionally, it is demonstrated that the traverse speed and peripheral speed are the dominant cutting parameters affecting the SWR. It is also seen that similar trends are observed for Onyx marble (excluding peripheral speed). Finally, it is concluded that the proposed models can be effectively used for the estimation of the SWR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.