Abstract

Nanoparticles have become popular photosensitizers for photothermal therapy (PTT), as they can be targeted to specific cancer tissues and deliver a chemotherapeutic drug, providing a multimodal therapeutic approach. Photothermal conversion efficiency of nanoparticles is critical in the assessment of their therapeutic use in PTT. We describe an accurate calorimetric method for the determination of the photothermal conversion efficiency of nanoparticles in solution. A tightly focused laser beam was used to irradiate a cuvette containing a solution of silver sulfide-glutathione quantum dots (Ag2S-GSH QDs), and the maximum steady-state temperature rise was measured with an infrared camera. The data were analyzed using two different photothermal conversion efficiencies, the intrinsic and external conversion efficiencies, to relate the induced heating power of the nanoparticles to the absorbed and incident optical powers, respectively. Measurements with a tunable Ti3+:sapphire laser showed that the intrinsic photothermal conversion efficiency of Ag2S-GSH QDs exceeded 91% over the 720-810 nm wavelength range. The method was also used to analyze poly(acrylic acid)-coated superparamagnetic iron oxide nanoparticles (PAA/SPIONs), and the intrinsic photothermal conversion efficiency was determined to be 83.4% at 810 nm. This approach is useful for the evaluation of various potential nanoparticles for photothermal therapy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call