Abstract

Breath exhaled hydrogen cyanide (HCN) has been identified to be associated with several respiratory diseases. Accurately distinguishing the concentration and release rate of different HCN sources is of great value in clinical research. However, there are still significant challenges due to the high adsorption and low concentration characteristics of exhaled HCN. In this study, a two-compartment kinetic model method based on negative photoionization mass spectrometry was developed to simultaneously determine the kinetic parameters including concentrations and release rates in the airways and alveoli. The influences of the sampling line diameter, length, and temperature on the response time of the sampling system were studied and optimized, achieving a response time of 0.2 s. The negative influence of oral cavity-released HCN was reduced by employing a strategy based on anatomical lung volume calculation. The calibration for HCN in the dynamic range of 0.5–100 ppbv and limit of detection (LOD) at 0.3 ppbv were achieved. Subsequently, the experiments of smoking, short-term passive smoking, and intake of bitter almonds were performed to examine the influences of endogenous and exogenous factors on the dynamic parameters of the model method. The results indicate that compared with steady-state concentration measurements, the kinetic parameters obtained using this model method can accurately and significantly reflect the changes in different HCN sources, highlighting its potential for HCN-related disease research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call