Abstract

ABSTRACTA methodology is developed for the estimation of the traverse force in friction stir welding (FSW) for various pin profiles by combining the results of numerical modelling and experimental monitoring. The effect of pin profiles on the traverse force is evaluated by introducing a modified ratio of the plastic deformation zone, which is obtained by numerical modelling. The formula is validated with the experimental data in the literature and indicates that the traverse force decreases exponentially with increasing ratio of the plastic deformation zone. The proposed methodology provides a concise approach for the estimation of the traverse force for various pin profiles in FSW and can be adopted for the design and assessment of the FSW tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.