Abstract

Plasma characteristics (i.e., n/sub e/ greater than or equal to 1 x 10/sup 13/ cm/sup -3/, T/sub e/ greater than or equal to 10/sup 7/ /sup 0/K, B/sub psi/ greater than or equal to 20 kG) in present and future magnetically confined plasma devices, e.g., Princeton Large Torus (PLT) and Tokamak Fusion Test Reactor (TFTR), meet the conditions for blackbody emission near the electron cyclotron frequency and at few harmonics. These conditions, derived from the hot plasma dielectric tensor, have been verified by propagation experiments on PLT and the Princeton Model-C Stellarator. Blackbody emission near the fundamental electron cyclotron frequency and the second harmonic have been observed in PLT and is routinely measured to ascertain the time evolution of the electron temperature profile. These measurements are especially valuable in the study of auxiliary heating of tokamak plasma. Measurement and calibration techniques will also be discussed with special emphasis on our fast-scanning heterodyne receiver concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call