Abstract

PurposeThe purpose of the study is to solve numerically the inverse problem of determining the time-dependent convection coefficient and the free boundary, along with the temperature in the two-dimensional convection-diffusion equation with initial and boundary conditions supplemented by non-local integral observations. From the literature, there is already known that this inverse problem has a unique solution. However, the problem is still ill-posed by being unstable to noise in the input data.Design/methodologyFor the numerical discretization, this paper applies the alternating direction explicit finite-difference method along with the Tikhonov regularization to find a stable and accurate numerical solution. The resulting nonlinear minimization problem is solved computationally using the MATLAB routine lsqnonlin. Both exact and numerically simulated noisy input data are inverted.FindingsThe numerical results demonstrate that accurate and stable solutions are obtained.Originality/valueThe inverse problem presented in this paper was already showed to be locally uniquely solvable, but no numerical solution has been realized so far; hence, the main originality of this work is to attempt this task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.