Abstract

Thoron (220 Rn) is a natural radioactive gas, tasteless, odourless, colourless, undetectable without proper equipment. This gas is carcinogenic, just like radon (222 Rn) but due to the short half-life (55.6s) and a small amount in the environment, its share in the absorbed radiation dose is often neglected. However, in areas rich in thorium (232Th), the radiation dose from the thoron can be much larger and quite significant. The problem is to measure the concentration of the thoron due to its short decay time as well as the fact that it is alpha-emitting as radon. An even greater challenge is to determine the emanation coefficient for the thoron.The method used in this experiment was developed by S.D. Kanse based on the work of D.J Greeman and adapted to the equipment used in Laboratory of Radiometric Expertise IFJ PAN. In the technique used to determine the thoron emanation coefficient, a closed loop system is used in which thoron is pushed out by means of a flow system from the sample and measured by a AlphaGuad DF2000 detector that is adapted to determine concentration of this gas. A sample of the material is placed between 2 filters in the geometry of the sandwich. This arrangement ensures that the thickness of the powder sample is significantly less than the length of the thoron diffusion, thus avoiding significant loss of the thoron due to intergranular absorption and facilitates the complete removal of this gas escaping from the powder. Using this technique, it is important to determine the concentration of 226Ra and the 232Th, since for the AlphaGuard detector, the ratio between thoron and radon should not exceed 5:1 for proper determination of the thoron concentration. Measurements of 226Ra and 232Th activity were carried out using gamma spectroscopy (HPGe detector). It was examined how the type of filter and grain size of sample affects the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.