Abstract

The use of geothermal borehole heat exchangers (BHEs) in combination with ground-source heat pumps represents an important part of shallow geothermal energy production, which is already used worldwide and becoming more and more important. Different measurement techniques are available to examine a BHE field while it is in operation. In this study, a field with 54 BHEs up to a depth of 120 m below ground level was analyzed using fiber optic cables. A distributed temperature sensing (DTS) concept was developed by equipping several BHEs with dual-ended hybrid cables. The individual fiber optics were collected in a distributor shaft, and multiple measurements were carried out during active and inactive operation of the field. The field trial was carried out on a converted, partly retrofitted, residential complex, “Lagarde Campus”, in Bamberg, Upper Franconia, Germany. Groundwater and lithological changes are visible in the depth-resolved temperature profiles throughout the whole BHE field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.