Abstract

The marine dinoflagellate Cochlodinium polykrikoides is a harmful and highly motile algal species. To distinguish between the motility characteristics of solitary and chain-forming cells, the swimming trajectories and speeds of solitary cells and 2- to 8-cell chains of C. polykrikoides were measured using a digital holographic particle tracking velocimetry (PTV) technique. C. polykrikoides cells exhibited helical swimming trajectories similar to other dinoflagellate species. The swimming speed increased as the number of cells in the chain increased, from an average of 391 μm s−1 (solitary cells) to 856 μm s−1 (8-cell chain). The helix radius R and pitch P also increased as the number of cells in the chain increased. R increased from 9.24 μm (solitary cell) to 20.3 μm (8-cell chain) and P increased from 107 μm (solitary cell) to 164 μm (8-cell chain). The free thrust-generating motion of the transverse flagella and large drag reduction in the chain-forming cells seemed to increase the swimming speed compared to solitary cells. The measured swimming speeds agreed with those from field observations. The superior motility of chain-forming C. polykrikoides cells may be an important factor for its bloom, in addition to the factors reported previously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call