Abstract

The surface tensions (σ) and temperature dependencies (dσ/dT) of several commercial 4-series ferritic stainless steels have been measured using the sessile drop technique on an Al2O3 plate over the temperature range 1789 to 1883 K in an atmosphere of high purity (P O 2 < 10−19 MPa) argon gas. Precise densities of liquid stainless steels have also been obtained using the modified sessile drop method in order to calculate accurate values of the surface tension. The surface tensions of liquid stainless steels decreased markedly with increasing sulphur concentration in the steels. The variation of surface tensions of liquid stainless steels can be described by the following equation σ = 1790 − 182 ln (1 + 260a S) (mN/m) when only S is considered or σ = 1820 − 304 ln (1 + 383a O) − 182ln (1 + 260a S) (mN/m) when both S and O are considered. The equations apply to the following compositional ranges: mass%O = 0.0022–0.0064, mass%S = 0.0008–0.05. The temperature coefficient of the surface tension (dσ/dT) of liquid stainless steel was found to change from negative to positive at a sulphur concentration of about 30 mass ppm in the steel. Nitrogen was found to have little effect on the surface tension of liquid stainless steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.