Abstract

A bending test scheme for accurately determining the structural elasticity of human nails is reported. The structural elasticity expresses the deformability of a multilayered material for bending, and it is the flexural rigidity without depending on the external dimensions. The human nail samples used in this study were prepared from the free ends of the nails and are, therefore, curved, so the equation to determine the structural elasticity was derived from elastic, curved beam theory. The structural elasticity of the nail samples determined by the bending tests was found to be 2.19 GPa, and this value decreased by about 50% when nail polish was put on the nails. Lower value of the Young's modulus of the nail polish was found to cause decrease in the structural elasticity of the sample. Moreover, we also measured the structural elasticity of samples of hair prepared from the same person by the bending tests. Surprisingly, the structural elasticity of the hair (4.37 GPa) was found to be twice that of the nails.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call