Abstract
VERA core simulator capabilities to predict spent fuel decay heat have been explored. The comparison with the Serpent2 and NEWT/TRITON sequence from the SCALE package, performed on the NPP Krško fuel test cases, has enabled independent verification of the successful implementation of the VERA depletion/decay calculation sequence applied on the extended nuclide set. Since the VERA is a 3-D core simulator, the focus in the rest of the paper was on the investigation of the 3-D effects and non-linearity of the soluble boron concentration averaging process, which are difficult to assess with most of available computational tools. A difference in the decay heat prediction between the 3-D and 2-D model approaches was analyzed. In addition, the impact of the Inconel grids on the decay heat was determined. Averaging the concentration of soluble boron over the fuel irradiation period has been found to be a viable approach, since it results in slight decay heat overprediction, which is considered conservative for most applications. Finally, demonstration on the Watts Bar Unit 1 cycle 1 depletion has shown formidable VERA capabilities to accurately predict spent fuel decay heat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.