Abstract

Polycystic ovary syndrome (PCOS) patients typically have 17-hydroxyprogesterone (17OHP) hyperresponsiveness to GnRH agonist (GnRHa) (PCOS-T). The objective of this study was to determine the source of androgen excess in the one-third of PCOS patients who atypically lack this type of ovarian dysfunction (PCOS-A). Aged-matched PCOS-T (n= 40), PCOS-A (n= 20) and controls (n= 39) were studied prospectively in a General Clinical Research Center. Short (4 h) and long (4-7 day) dexamethasone androgen-suppression tests (SDAST and LDAST, respectively) were compared in subsets of subjects. Responses to SDAST and low-dose adrenocorticotropic hormone (ACTH) were then evaluated in all. Testosterone post-SDAST correlated significantly with testosterone post-LDAST and 17OHP post-GnRHa (r = 0.671-0.672), indicating that all detect related aspects of ovarian dysfunction. An elevated dehydroepiandrosterone peak in response to ACTH, which defined functional adrenal hyperandrogenism, was similarly prevalent in PCOS-T (27.5%) and PCOS-A (30%) and correlated significantly with baseline dehydroepiandrosterone sulfate (DHEAS) (r = 0.708). Functional ovarian hyperandrogenism was detected by subnormal testosterone suppression by SDAST in most (92.5%) PCOS-T, but significantly fewer PCOS-A (60%, P< 0.01). Glucose intolerance was absent in PCOS-A, but present in 30% of PCOS-T (P < 0.001). Most of the PCOS-A cases with normal testosterone suppression in response to SDAST (5/8) lacked evidence of adrenal hyperandrogenism and were obese. Functional ovarian hyperandrogenism was not demonstrable by SDAST in 40% of PCOS-A. Most of these cases had no evidence of adrenal hyperandrogenism. Obesity may account for most hyperandrogenemic anovulation that lacks a glandular source of excess androgen, and the SDAST seems useful in making this distinction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call