Abstract
Abstract In this paper, an algorithm for the determination of the singularity loci of spherical three-degree-of-freedom parallel manipulators with prismatic atuators is presented. These singularity loci, which are obtained as curves or surfaces in the Cartesian space, are of great interest in the context of kinematic design. Indeed, it has been shown elsewhere that parallel manipulators lead to a special type of singularity which is located inside the Cartesian workspace and for which the end-effector becomes uncontrollable. It is therfore important to be able to identify the configurations associated with theses singularities. The algorithm presented is based on analytical expressions of the determinant of a Jacobian matrix, a quantity that is known to vanish in the singular configurations. A general spherical three-degree-of-freedom parallel manipulator with prismatic actuators is first studied. Then, several particular designs are investigated. For each case, an analytical expression of the singularity locus is derived. A graphical representation in the Cartesian space is then obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.