Abstract

The radome, which is often used to house airborne scanning radar antennas, causes a large boresight error and boresight error slope of the radar antenna. One way to decrease the boresight error induced by the radome is to modify its geometric thickness. Determining the grinding scheme from the boresight error performance is the most important problem to be solved. A typical inverse problem about electromagnetic fields is solving the precise grinding compensation area and allowance according to the antenna aperture distribution and the radome’s boresight error performance, which could hardly be solved by a purely mathematical method. An effective approach combining theoretical analysis and mathematical calculations with experimental measurement is presented in this paper to determine the grinding area and allowance for compensating the boresight error performance of the radome. By comparing the calculated and measured data of the boresight error and the boresight error slope before and after grinding, it is shown that this method is simple and practical and can be used for many kinds of radomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call