Abstract

This study comprehensively determines the role of all the major PKC isoforms in the expression morphine tolerance. Pseudosubstrate and receptors for activated C-kinase (RACK) peptides inhibit only a single PKC isoform, while previously tested chemical PKC inhibitors simultaneously inhibit multiple isoforms making it impossible to determine which PKC isoform mediates morphine tolerance. Tolerance can result in a diminished effect during continued exposure to the same amount of substance. In rodents, morphine pellets provide sustained exposures to morphine leading to the development of tolerance by 72 h. We hypothesized that administration of the PKC isoform inhibitors i.c.v. would reverse tolerance and reinstate antinociception in the tail immersion and hot plate tests from the morphine released solely from the pellet. Inhibitors to PKCα, γ and ε (100–625 pmol) dose-dependently reinstated antinociception in both tests. The PKCβ I, β II, δ, θ, ε, η and ξ inhibitors were inactive (up to 2500 pmol). In other mice, the degree of morphine tolerance was determined by calculating ED 50 and potency-ratio values following s.c. morphine administration. Morphine s.c. was 5.6-fold less potent in morphine-pelleted vs. placebo-pelleted mice. Co-administration of s.c. morphine with the inhibitors i.c.v. to either PKCα (625 pmol), γ (100 pmol) or ε (400 pmol) completely reversed the tolerance so that s.c. morphine was equally potent in both placebo- and morphine-pelleted mice. The PKCβ I, β II, δ, θ, ε, η and ξ inhibitors were inactive. Thus, PKCα, γ and ε appear to contribute to the expression of morphine tolerance in mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.