Abstract

A novel method, based upon primer extension, has been developed for measuring the reopening temperature of a single type of DNA hairpin structure. Two DNA oligonucleotides have been utilized and designated as primers 1 and 2. Primer 1, with its 5- and 3'-termini fully complementary to the hairpin flanking sequences, was used to evaluate primer extension conditions, and primer 2, with its 3'-end competing with the DNA hairpin stem, was used to detect the DNA hairpin reopening temperature. A single DNA hairpin structure was formed on the DNA template by thermal denaturation and renaturation, and this hairpin structure was predicted to prevent the annealing of the 3'-end of primer 2 with the template DNA, which leads to no primer extension. By incubating at different temperatures, the DNA hairpin structure can be reopened at a particular temperature where the primer extension can be carried out. This resulted in the appearance of double-stranded DNA that was detected on an agarose gel. This temperature is defined here as the hairpin reopening temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.