Abstract

Paperboard is widely used in different applications, such as packaging and graphic printing, among others. Consumption of recycled paper is growing, which has led the paper-mill packaging industry to apply strict quality controls. This means that it is very important to develop methods to test the quality of recycled products. In this article, we focus on determining the recovered-fiber content of paperboard samples by applying Fourier transform mid-infrared (FT-MIR) spectroscopy in combination with multivariate statistical methods. To this end, two very fast, nondestructive approaches were applied: classification and quantification. The first approach is based on classifying unknown paperboard samples into two groups: high and low recovered-fiber content. Conversely, under the quantification approach, the content of recovered fiber in the incoming paperboard samples is determined. The experimental results presented in this article show that the classification approach, which classifies unknown incoming paperboard samples, is highly accurate and that the quantification approach has a root mean square error of prediction of about 4.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.