Abstract
The generally accepted model of free fatty acid (FA) transport through cellular membranes occurs in three steps, adsorption of the FA onto the membrane, translocation across the membrane ("flip-flop"), and subsequent desorption of the FA into the cytosol. There still exists some dispute as to the identity of the rate-limiting step of FA transport. In the present study, sum-frequency vibrational spectroscopy (SFVS) was used to directly measure the rate of stearic acid (SA) flip-flop in planar supported lipid bilayers (PSLBs) comprised of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The impact of SA on the physical properties of binary mixtures of SA and DSPC was investigated via Π-A isotherms from which the excess free energies of mixing and compression moduli were calculated. The manner in which these physical changes influenced the rates of SA and DSPC flip-flop was subsequently examined using SFVS. The rates of SA and DSPC flip-flop revealed that SA flip-flops independently of DSPC and on much faster time scales than its phospholipid counterpart. SFVS was also used to probe the rate of protein-unassisted SA desorption from hybrid supported lipid bilayers (HSLBs), allowing for the first decoupled measurement of the rates of desorption and flip-flop. These results provide strong evidence for desorption being the rate-limiting step in FA transport through the membrane in the absence of proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.