Abstract

ABSTRACTThe rate constant of the reaction between CCl2 radicals and HCl was experimentally determined. The CCl2 radicals were obtained by infrared multiphoton dissociation of CDCl3. The time dependence of the CCl2 radicals' concentration in the presence of HCl was determined by laser‐induced fluorescence. The experimental conditions allowed us to associate the decrease in the concentration of radicals to the self‐recombination reaction to form C2Cl4 and to the reaction with HCl to form CHCl3. The rate constant for the self‐recombination reaction was determined to be in the high‐pressure regime. The value obtained at 300 K was (5.7 ± 0.1) × 10−13 cm3 molecule−1 s−1, whereas the value of the rate constant measured for the reaction with HCl was (2.7 ± 0.1) × 10−14 cm3 molecule−1 s−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.