Abstract

Determination of the porosity, structural characteristics of pores, and gas pressure in closed pores is the most important part of assessing physical and mechanical properties of materials. The internal pressure inside the pore can be used in estimating the level of strength reliability of the porous volume of the product to optimize the technological processes of product manufacturing, control their structure and properties, and avoid the formation of cracks at the boundaries of the particles consisting the material. We present a method for calculating the internal pressure in a spherical pore that has arisen in the material of a product obtained using powder metallurgy or additive technologies. The proposed procedure for measuring internal pressure in a pore consists in application of an external pressure to the product, measurements of the displacements of the points on the pore surface, and calculation of the internal pressure from the difference between the displacements. In this case, the known solutions of the problem of the theory of elasticity regarding the deformation of a spherical cavity located in the center of a spherical hollow ball are used. The results obtained can be used to assess the properties and structure of the products obtained by additive technology and methods of powder metallurgy, as well as to improve the technology of their manufacture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.