Abstract

The ability to determine the centre position of a localized temperature change within a chirped fibre Bragg grating (CFBG) has been investigated as a function of grating strength. The intragrating sensor is based on the analysis of reflected power spectra arising from a CFBG. The technique uses a discrete Fourier transform (FFT) in which the measured spectrum of the CFBG due to a localized temperature change (heat source) was simulated using a FFT grating design model. The model operated on the reference spectrum and hypothesis temperature distributions, T(z), to generate a spectrum of a CFBG subjected to a hypothesis temperature disturbance. The simulated spectrum was fitted to the measured spectrum using a three-parameter automatic disturbance function fitting algorithm operating on position, width and amplitude of temperature change. RMS deviations to within 0.03 mm of applied values of position have been obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.