Abstract

The feasibility of a relevant analysis of the fluorescence decays of Langmuir−Blodgett−Kuhn films where electron and energy transfer occur simultaneously is demonstrated. Starting from a stretched exponential, describing Forster-type energy transfer, a model describing simultaneous photoinduced electron transfer and energy transfer is developed. In this model a binomial distribution of electron donors (pyrene) is assumed in the layer adjacent to the excited probe (Rhodamine G). When the fluorescence decays of two or three samples with different concentrations of electron donors are analyzed simultaneously with the decay of a sample containing no electron donor, reliable values of the global parameters (the fluorescence decay time of the unquenched probe, the rate constant for electron transfer, and the rate constant for energy transfer to a trap) could be obtained. The local parameters (the average number of electron donors in a site opposite the probe and the fraction of the monolayer containing an elect...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.