Abstract
In angle-resolved photoemission (ARPES) from crystalline solids, wave-vector conservation applies to the two-dimensional (2D) surface, which may thus be defined as the reference plane in ARPES. We investigate whether such reference varies for photoemitted electrons in nanometer-sized systems that expose different crystal planes. To this aim, we exploit the structural tunability of the Ag/Cu(223) system which is capable of offering surfaces with periodic arrays of nanofacets of varying size and orientation. A thorough, photon-energy-dependent analysis of the surface states confined to such nanostructures is performed comparing different reference planes for photoemitted electrons. Assuming the premise that k|| must be a good quantum number for 2D states, we conclude that the (final state) photoelectron reference direction is not the average optical direction but the local facet that confines the (initial state) surface electrons. Moreover, in the general case of nanostructured systems with uneven surfaces, we show how the photoelectron reference plane can be empirically determined through such a photon-energy-dependent ARPES analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.