Abstract

The purpose of this study was to propose an optimization procedure for determining power output during very brief maximal pedalling exercise. Twenty-six healthy male students (21-28 years) performed anaerobic tests on a Monark bicycle ergometer with maximal effort for less than 10 s at eight different loads ranging from 28.1 to 84.2 Nm in pedalling moment. The maximal pedalling rate was determined from the minimal time required for one rotation of the cycle wheel. Pedalling rate decreased linearly with the load. The relationship between load and pedalling rate was represented by two linear regression equations for each subject; one regression equation was determined from eight pairs of pedalling rates and loads (r less than -0.976) and the other from three pairs (at 28.1, 46.8, 65.5 Nm; r less than -0.969). The two regression coefficients of the respective regression equations were almost identical. Mean +/- S.D. of maximal power output (Pmax) which was determined for each subject based on the two linear regression equations for eight pairs and three pairs of pedalling rates and loads was 930 +/- 187 W (13.4 +/- 1.6 W kgBW-1) and 927 +/- 187 W (13.4 +/- 1.6 W kgBW-1), respectively. There was no statistically significant difference between the values of Pmax which were obtained from each equation. It was concluded that maximal anaerobic power could be simply determined by performing maximal cycling exercise at three different loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.