Abstract
The potential risk of various silver-containing nanoparticles (AgCNPs) in soils is related to the concentration, size, and speciation, but their determination remains a great challenge. Herein, we developed an effective method for determining the particle number, size, and species of dominant AgCNPs in soils, including nanoparticles of silver (Ag NPs), silver chloride (AgCl NPs), and silver sulfide (Ag2S NPs). By ultrasonication wand-assisted tetrasodium pyrophosphate extraction, these AgCNPs were extracted efficiently from soils. Then, multistep selective dissolution of Ag NPs, AgCl NPs, and whole Ag NPs/AgCl NPs/Ag2S NPs was achieved by 1% (v/v) H2O2, 5% (v/v) NH3·H2O, and 10 mM thiourea in 2% (v/v) acetic acid, respectively. Finally, the particle number concentration and size distribution of AgCNPs in the extracts and the remaining AgCNP particle number concentration after each dissolution were determined by single-particle inductively coupled plasma mass spectroscopy for speciation of the dominant AgCNPs. AgCNPs were detected in all five soil samples with the concentrations of 0.23-8.00 × 107 particles/g and sizes of 16-110 nm. Ag2S NPs were the main form of AgCNPs in the examined soils with the percentage range of 53.98-69.19%, followed by AgCl NPs (11.42-23.31%) and Ag NPs (7.78-16.19%). Our method offers a new approach for evaluating the occurrence and potential risk of AgCNPs in environmental soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.