Abstract

The hypothesis was tested that beryllium metal particles have a uniformly thick surface coating of beryllium oxide and that smaller particles should have a higher oxide fraction by mass because they have a higher surface to volume ratio. The mass fraction of oxygen, physical density, and specific surface area were determined for size-fractionated samples of respirable beryllium metal particles. The largest particles analyzed (count median diameter 4.6 microns with geometric standard deviation 1.6) contained 7% +/- 1% beryllium oxide by mass; had a physical density of 1.90 +/- 0.02 g/cm3; and had a specific surface area of 4.0 +/- 0.3 m2/g. The smallest particles analyzed (count median diameter 0.4 micron with geometric standard deviation 1.8) contained 31% +/- 3% beryllium oxide by mass; had a physical density of 2.00 +/- 0.17 g/cm3; and had a specific surface area of 20.8 +/- 2.1 m2/g. These shifts in density and oxide content with size and surface area are consistent with a beryllium metal core of density 1.84 +/- 0.02 g/cm3 (1.848 g/cm3 is theoretical); a beryllium oxide layer of density of 2.53 +/- 0.16 g/cm3 (3.025 g/cm3 is the perfect crystalline density); and an oxide layer thickness of 49 +/- 4 A for all particle sizes. These results indicate that the inhalation toxicity of beryllium metal particles may be similar to that of beryllium oxide formed at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.