Abstract
The study reports a computational analysis of the influence of proton donor group adjacent to the reaction center during ester ammonolysis of an acylated diol as a model reaction for peptide bond formation. This analysis was performed using catalytic maps constructed after a detailed scanning of the available space around the reaction centers in different transition states, a water molecule acting as a typical proton donor. The calculations suggest that an adjacent proton donor center can reduce the activation barrier of the rate determining transition states by up to 7.2 kcal/mol, while no inhibition of the reaction can be achieved by such a group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.