Abstract

When performing earthworks for the development and loading of soil, a singlebucket hydraulic excavator is widely used. One of the ways to increase the efficiency of the excavator is the use of a dropdown bucket, which allows you to increase productivity by reducing the time spent on unloading the bucket. The hydromechanism of the drive of the visor of the opening bucket should ensure overcoming the resistances arising during unloading. The paper proposes a method for calculating the force value sufficient to overcome the maximum resistances arising at the initial stage of unloading the opening bucket of the excavator. The proposed technique takes into account the design features of the known versions of the opening buckets, namely: with the rotation of the visor along the radius, as well as with the complex movement of the visor. The developed technique takes into account the friction of the soil against the walls of the visor by considering the balance of forces acting in the volume of the soil located in the bucket. Taking into account the design features of the opening bucket when calculating the force in the hydraulic mechanism of the visor drive will increase the bucket capacity while maintaining or reducing the cost of the hydraulic drive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call