Abstract

The relatively large measured value of theta_13 has opened various possiblities to determine the neutrino mass ordering, among them using PINGU, the low-energy extention of the IceCube neutrino telescope, to observe matter effects in atmospheric neutrinos, or a high statistics measurment of the neutrino energy spectrum at a reactor neutrino experiment with a baseline of around 60 km, such as the Daya Bay II project. In this work we point out a synergy between these two approaches based on the fact that when data are analysed with the wrong neutrino mass ordering the best fit occurs at different values of |Delta m^2_31| for PINGU and Daya Bay II. Hence, the wrong mass ordering can be excluded by a mismatch of the values inferred for |Delta m^2_31|, thanks to the excellent accuracy for Delta m^2_31 of both experiments. We perform numerical studies of PINGU and Daya Bay II sensitivities and show that the synergy effect may lead to a high significance determination of the mass ordering even in situations where the individual experiments obtain only poor sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call