Abstract

Mean dynamic ocean topography (or MDT) is closely related to ocean circulation and global climate change. It has important scientific significance and application value for the development and utilization of marine resources in China's coastal areas. Based on the terrain gravity, marine gravity, and SRTM 3 s data, an algorithm to reduce the problem of gravity data gaps between land and sea is proposed. A consistent land-sea gravity model is established based on point-mass fusion method. Then geoid model, which accuracy was estimated to be 8.5 cm through the verification of 348 GNSS/level data from the coastal provinces, of China's coastal areas was calculated through remove-restore technique. Connecting the above geoid model with DTU15 MSS model to establish a MDT model in China's coastal areas using the direct method in space domain. The effect of gravity field model, dominant factors of sea surface topography, and low pass filter are analyzed. Taking Bohai Sea and Yellow Sea as an example, and comparing MDT with the two international models CNES_2013_MDT and DTU15_MDT. The results show that the MDT has the potential to construct a vertical datum of the ocean and carry out related scientific research and application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.