Abstract
Several results about the long period (LP) tidal waves are obtained by the analysis of series of superconducting gravity data, provided by the Global Geodynamics Project (GGP). The most important result is the determination of a single group called LPMF, composed by all LP tides but representing accurately the parameters of the M f wave. As the LP tidal generating potential is vanishing at latitudes ±35°15′52″ we cannot determine accurate tidal amplitude factors for the stations located between ±40° and ±30°. However, it is still possible to obtain tidal residual vectors and compare them with oceanic tidal loading computations. For 15 stations the NAO99 oceanic model is giving a coherent picture. For nine stations with M f amplitude larger than 3 μgal (1 μgal = 10 nm s −2 ) a global analysis is obtained by introducing the loading effect of the ocean directly in the observation equations. The mean amplitude factor obtained for LPMF is larger than expected from the models and there is a significant phase lag, showing the imperfection of the tidal oceanic models for M f . Other new result is the first separate estimation of the parameters of the LP tides, generated by the tidal potential of third degree, dominated by a Lunar declinational monthly wave, called here 3 M md . Due to their small amplitudes (under 1 μgal) these waves are practically hidden by the noise. Nevertheless, the quality of the data and the flexibility of the VAV analysis method [Venedikov, A.P., Arnoso, J., Vieira, R., 2001. Program VAV/2000 for tidal analysis of unequally spaced data with irregular drift and colored noise. J. Geodetic Soc. Jpn. 47 (1), 281–286; Venedikov, A.P., Arnoso, J., Vieira, R., 2003. VAV: a program for tidal data processing. Comput. Geosci. 29, 487–502.] allow getting significant results, in agreement with the theory of the Earth deformation by the tidal potential of third degree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.