Abstract

In cattle breeding, regularly taking the animals to the scale and recording their weight is important for both the performance of the enterprise and the health of the animals. This process, which must be carried out in businesses, is a difficult task. For this reason, it is often not performed regularly or not performed at all. In this study, we attempted to estimate the weights of cattle by using stereo vision and semantic segmentation methods used in the field of computer vision together. Images of 85 animals were taken from different angles with a stereo setup consisting of two identical cameras. The distances of the animals to the camera plane were calculated by stereo distance calculation, and the areas covered by the animals in the images were determined by semantic segmentation methods. Then, using all these data, different artificial neural network models were trained. As a result of the study, it was revealed that when stereo vision and semantic segmentation methods are used together, live animal weights can be predicted successfully.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.