Abstract
We have reported a study of a number of metal/ p-type InP (Cu, Au, Al, Sn, Pb, Ti, Zn) Schottky barrier diodes (SBDs). Each one diode has been identically prepared on p-InP under vacuum conditions with metal deposition. In Schottky diodes, the current transport occurs by thermionic emission over the Schottky barrier. The current–voltage characteristics of Schottky contacts are described by two fitting parameters such as effective barrier height and the ideality factor. Due to lateral inhomogeneities of the barrier height, both characteristic diode parameters differ from one diode to another. We have determined the lateral homogeneous barrier height of the SBDs from the linear relationship between experimental barrier heights and ideality factors that can be explained by lateral inhomogeneity of the barrier height. Furthermore, the barrier heights of metal–semiconductor contacts have been explained by the continuum of metal-induced gap states (MIGS). It has been seen that the laterally homogeneous barrier heights obtained from the experimental data of the metal/ p-type InP Schottky contacts quantitatively confirm the predictions of the combination of the physical MIGS and the chemical electronegativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.