Abstract

Two-dimensional (2D) [(1)H, (15)N] heteronuclear single-quantum coherence (HSQC) NMR experiments of the kinetics of aquation and sulfation of the dinuclear platinum anticancer complex [{trans-PtCl(NH(3))(2)}(2)(μ-NH(2)(CH(2))(6)NH(2))](2+) (1,1/t,t, 1) in 15 mM sulfate solution are reported using conditions (298 K, pH 5.4) identical to those previously used for other anionic systems (phosphate and acetate), allowing for a direct comparison. Sulfate is the fourth most abundant anion in human plasma. The rate constant for the aquation step (k(H)) is higher than that previously found in the presence of phosphate, but the anation rate constants are similar. The rate constant for sulfate displacement of the aqua ligand (k(L)) is approximately three times higher than that of phosphate, and a further major difference between these two anions is the very high k(-L) for loss of sulfate, suggesting that when formed in plasma the sulfato species will be substitution labile. We also introduce a novel (free) plug-in, '2D NMR analysis', developed for the expedited integration and analysis of 2D [(1)H, (15)N] HSQC NMR spectra. We have found that this plug-in significantly reduces the amount of time taken in the analysis of experiments with no loss to the quality of the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.