Abstract

AbstractA comprehensive investigation to determine the initiation power of detonators containing as a base charge the novel explosives: dihydroxylammonium 5,5′‐bis(tetrazolate‐1N‐oxide) – TKX‐50, dihydroxylammonium 5,5′‐bis(3‐nitro‐1,2,4‐triazolate‐1N‐oxide) – MAD‐X1, pentaerythritol tetranitrocarbamate – PETNC and 3,3′‐diamino‐4,4′‐azoxyfurazan – DAAF in comparison with RDX, HMX and PETN was undertaken. In order to estimate the initiation power of the detonators, the underwater initiating capability test was used. The total energy as a sum of the primary shock wave energy and the bubble gas energy was determined for each of these explosives, by measuring the overpressure of the shock waves generated in water. Moreover, the complete synthesis for novel explosives is presented. The thermal behavior of the explosives was investigated using DSC (differential scanning calorimetry). The gas phase absolute molar enthalpies at 298 K and 105 Pa were calculated theoretically using the modified complete basis set method (CBS‐4M; M referring to the use of minimal population localization) with the Gaussian 09 software. Gas phase standard molar enthalpies of formation (ΔHf°(g)) at 298 K were computed using the atomization energy method. Standard molar enthalpies of formation (▵H(s)°) were calculated using ΔHf°(g) and the standard molar enthalpies of sublimation by applying Trouton’s rule. The Chapman‐Jouguet (CJ) characteristics based on calculated ▵H(s)° values were computed using the EXPLO5 V6.01 thermochemical computer code. For the calculations the theoretical maximum densities and densities obtained during the experiments presented in this work were used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call