Abstract

The object of research is the state of equilibrium of ferrum(II) and ferrum(III) oxides in glass melts at temperatures of 1000–1400 °С, welded in oxidizing, neutral and reducing conditions with a content of ferrum oxides up to 1.5 %. This problem is relevant in the following aspects. The first aspect of this problem is the unwanted coloring of the glass: FeO colors the glass blue, and Fe2O3 – yellow. The combined presence of ferrum(II) oxide and ferrum(III) oxide determines the gradations of glass shades that fall on the green spectrum. The second aspect concerns the thermophysics of processes of boiling glasses containing iron oxides. Ferrum(II) oxide causes a strong absorption band of infrared radiation in the region of 1.1 μm. This becomes an obstacle to the volumetric heating of glass in the processes of cooking, forming, and annealing. The third aspect of the problem concerns the structure of glasses and glass-crystalline materials with an increased content of iron oxides. Iron oxides significantly affect the processes of glass structuring, as ferrum(III) oxide is a typical network former, and ferrum(II) oxide is a typical modifier. The state of FeO↔Fe2O3 equilibrium in glass is significantly influenced by the glass cooking environment, the total amount of iron oxides, and the temperature of the melt. The glass brewing environment has the greatest influence on the balance of iron oxides in the glass. The share of FeO oxide in the total amount of iron oxides (FeO+Fe2O3) increases sharply when moving from an oxidizing medium to a neutral one and then to a reducing one. During thermostating at a temperature of 1400 °С, the proportion of FeO in the glass increases by 1.4–1.7 times during cooking in an oxidizing environment, by 1.2–1.3 times in a neutral environment, and by approximately 1.1 times in a reducing environment. At the same time, this growth is more noticeable in glasses with a lower iron content. Thus, the equilibrium state of FeO↔Fe2O3 in glass significantly affects the technological and operational properties of silicate melts and the final glass. The ratio of formed oxides of trivalent and divalent ferrum was studied by chemical (titrometric) analysis. The research results can be used in practice to develop the composition of glasses with an increased content of iron oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.