Abstract
We have studied the element and orbital-specific electronic structure of thin films of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) using a combination of synchrotron radiation-exited resonant x-ray emission spectroscopy, x-ray absorption spectroscopy, x-ray photoelectron spectroscopy, as well as density functional theory calculations. Resonant and non-resonant x-ray emission spectroscopies were used to measure the C and O 2p partial densities of state in PTCDA. Furthermore, resonant x-ray emission at the C and O K-edges is shown to be able to measure the partial densities of states associated with individual atomic sites. The flat molecular orientation of PTCDA on various substrates is explained in terms of the carbonyl O atom acting as a hydrogen-bond acceptor leading to multiple in-plane intermolecular C=O···H-C hydrogen bonding between carbonyl groups and the perylene core of the neighboring PTCDA molecules. We support this conclusion by comparison of our calculations to measurements of the electronic structure using element-, site-, and orbital-selective C and O K-edge resonant x-ray emission spectroscopy, and photoemission spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.